
How to Create a Multi-Mode XReflector

By Dennis Mojado, AD6DM

ad6dm@arrl.net

February 2019

Last updated: May 10, 2019

Table of Contents

Introduction 3

Debian 9 Server 4

AWS Setup 4

Use an Elastic IP on AWS 6

Set Up Your FQDN on Your Own Registered Domain 6

Firewalls (Security Group) Settings 6

Logging into your new Debian Server 7

Optional: SSL Secure your Dashboards 7

Phase 1: XLX DStar Reflector and YSF (to DMR) Reflector 8

Diagram of Phase 1 8

Install the Multi-Reflector Server Applications 9

Configuring your XLX Reflector 10

Testing Your XLX Reflector for DStar 13

Requesting Add to the XLX Directory (deprecated) 14

Activating your XLX Reflector 15

Configuring the YSF Reflector 16

Running your YSFReflector 16

Registering your YSF Reflector 17

Configuring YSF2DMR for Initial YSF to DMR Use Only 18

Running and Restarting YSF2DMR 20

Requesting XLX Interlink with Brandmeister 21

Phase 2: YSF to XLX DMR with DStar Transcoding (Tri-mode crosslink) 22

Diagram of Phase 2 23

Configuring YSF2DMR link to Your Own XLX 23

AMBED Server for DStar Transcoding 24

Prepping and Installing AMBE3000 devices 24

Change ThumbDV Product Description (Deprecated as of April 2019) 25

Obtain the FTDI linux drivers for your AMBE3000 devices 28

Installing ambed Software 29

Running and restarting with the AMBE3000 devices 32

Linking XLX to AMBED 32

Phase 3: Integration with Brandmeister for True 3-mode Crosslink 34

Diagram of Phase 3 35

Setting up XLX Interlink with Brandmeister 35

Project Cost 36

References 37

An AMBED Server Experience (document) 37

Brandmeister Support 37

How to Link DMR and DStar by AF9W Bob Stephens 37

Procedure for Installing XLX Transcoding System by IZ7AUH 37

Kings of Digital Discussion Board 37

Multi-Reflector Installer 37

XLX Brandmeister config 37

XLX DMR explained 37

XLX and XRF Reflectors, DMR, and DMRGateway with Pi-Star 37

XLX Forum 37

XLX Yahoo Group 38

YSF2DMR sample config 38

YSF2DMR source code 38

YSF Reflector Registry 38

Introduction
Documentation on this subject is spread throughout the Internet, with several good
sources, but very few end-to-end sources.

What do we want to do?

We would like to set up an Internet-based multi-mode reflector that allows a ham radio
operator with a DStar, Fusion, or DMR radio to enter a reflector, room, or talkgroup, and be
heard by all the others in the same “net”, regardless of the others’ digital voice mode.

So what we are building is called an XLX Multi-Mode Reflector.

Out of the box (so to speak) this XLX reflector is capable of accepting DStar and Fusion
audio streams. DMR is also possible, but this is not necessarily Brandmeister DMR. You will
need something extra (YSF2DMR) to connect to regular BM DMR talkgroups (more on that
later).

Kings of Digital, San Antonio Digital Radio, and various other groups have made good PDFs
and website pages with lots of great information on how to get this going. But they gloss
over some critical path details that require extensive online searching to understand. This
is understandable, because once it works it seems intuitive that it should have worked that
way. But for the learner, this is a difficult path that often resorts to cries for help in forum
discussion boards, looking at example configuration files, and even reverse-engineering
C++ code to understand what parameters mean and hopefully gleaning something usable to
plug into a configuration file.

Documenting this all is a daunting task, but I will share some insights in this How-To in the
hopes that I will be able to contribute to the collective knowledge on how to get more hams
on digital voice radio.

This will not be a quick read, nor will it be an exacting step-by-step how-to for all different
scenarios. However, it will contain some information that I gathered from several days of
scouring for answers to get my group of hams talking to each other.

Debian 9 Server
First and foremost, a person needs to set up a Debian 9 (Stretch) server.

Debian can be downloaded from https://www.debian.org/distrib/netinst . Most likely you
will want the amd64 build for most modern computers.

I decided to do this on Amazon Web Services Elastic Compute Cloud (AWS EC2) because I
didn’t want to have a reflector at the mercy of my unreliable cable Internet nor at the
mercy of my power company or consumer-grade home network infrastructure. YMMV, if
you want to set this up at home with your own Debian server, that allows for greater
control. But for XLX367, I would rather outsource the uptime service level and geographic
availability to the cloud where large companies specialize in this. If you don’t go the AWS
route, you can skip the next few sections.

AWS Setup
If you don’t know what AWS is, you’re going to have to pause here and learn how to get an
AWS account, and learn a little bit about how to manage that account. That How-To is
outside the scope of this document.

https://www.debian.org/distrib/netinst
https://aws.amazon.com/ec2/

First I went to AWS Console and selected a region central to all my users. I picked Ohio
(US-East 2) because the target users are scattered throughout the country and I felt a
central USA location (not really all that “central”) would be the best for least network
latency.

I chose “Launch New Instance” and went to the AWS Marketplace to find the Debian 9 AMI.
It’s a base image of Debian version 9.6, was released on November 10th, 2018.

I then chose a t2.micro instance. This instance is “eligible for free tier” but I’ve long since
lost that introductory privilege. That means I’ll be spending about $10/month for this
server instance.

Perform the usual steps of setting up an instance, such as assigning an IAM role, and
downloading the keys so you can later ssh to the instance.

Once that’s fired up (several minutes), you can begin configuring the network.

Use an Elastic IP on AWS
Optional but very handy:

If you want to easily swap out instances but keep the same IP address, set up an Elastic IP
right after you create the new instance, and assign that public IP to the new Debian server.
This is good if you want test an upgrade or do a total rebuild in a different instance, but
don’t want to wait days for a DNS IP change, or weeks for a registration IP change.

Set Up Your FQDN on Your Own Registered Domain
After setting up your instance with fresh Debian 9, you should have a fully qualified domain
name (FQDN) in mind. In XLX367 JerryNet’s case, I decided on xrf367.ad6dm.net.

Go to your DNS management page, typically in your domain registrar, and set up the DNS
record for your new Elastic IP address. It takes the form of

xrf367 A 18.216.66.72
ysf A 18.216.66.72

(I put the YSF Reflector and XLX reflector on the same server.)

You will need both the domain and the IP to register with XReflector and YSF Reflector
online directories.

Firewalls (Security Group) Settings
AWS instances, and most other cloud setups (e.g. Digital Ocean, Vultr, etc) don’t open new
server instances to the world on all ports. So you have to set up firewall rules (a.k.a.
Security Groups in AWS terminology) to allow good traffic in.

Even on Debian installs at your home physical box, you will need to configure your home
network to allow certain types of traffic to come in through the router to your Debian linux
machine. Here are the firewall allow rules that you need to configure. In my case, this was
in AWS’ Security Group Settings

● TCP port 80 (http)
● TCP port 443 (https)
● TCP port 22 (ssh)
● UDP port 10001 (json interface XLX Core)

● UDP port 10002 (XLX interlink)
● UDP port 10100 (AMBE controller port)
● UDP port 10101 - 10199 (AMBE transcoding port)
● UDP port 30001 (DExtra protocol)
● UDP port 20001 (DPlus protocol)
● UDP port 30051 (DCS protocol)
● UDP port 62030 (MMDVM protocol)
● UDP port 8880 (DMR+ DMO mode)
● UDP port 42000 (YSF Reflector)

Note: It’s also helpful if you aren’t restricting SSH to certain IPs, to install fail2ban, which
will ban IP addresses that are attempting to login to your server. Default settings for
fail2ban are ban an IP for 10 minutes if it fails login 5 times over a 10 minute period.
Configuration of fail2ban is not critical to this document, so I’ll leave that for you to search
on the Googs.

Logging into your new Debian Server
When you first set up a new AWS instance, it prompted you to download a PEM key. You
can login to your new server by doing:

ssh -i /path/to/YourKey.pem admin@yourserver.ip.address

Optional: SSL Secure your Dashboards
Like most admins, I hate unencrypted websites. Everything should be using SSL, especially
with the ease of getting a SSL certificate through LetsEncrypt.

sudo apt-get install python-certbot-nginx

I prefer managing SSL through an SSL terminator, rather than having everything go
through Apache. In this case, I use nginx as the termination server.

sudo apt-get install nginx

After installation, you will need to configure nginx to point to your letsencrypt certificates.
Our config is here:

https://gist.github.com/denmojo/8cdab21800fd25012c58a8b2fa779052

https://www.fail2ban.org/wiki/index.php/Main_Page
https://letsencrypt.org/
https://gist.github.com/denmojo/8cdab21800fd25012c58a8b2fa779052

In order to get the LetsEncrypt certificate, I ran:

sudo certbot --authenticator standalone --installer nginx -d
xrf367.ad6dm.net -d ysf.ad6dm.net --pre-hook "service nginx stop"
--post-hook "service nginx start"

You will also have to change the default Apache ports to listen on 8080 after you have run
the scripts below. (Of course, you can change these in the nginx config and apache config to
any other unused port you want.)

These are found in:

/etc/apache2/sites-enabled/yourdomainname.conf

and

/etc/apache2/ports.conf

Modify the ports in those files to listen on 8080.

Phase 1: XLX DStar Reflector and YSF (to DMR) Reflector
That was some tedious stuff, huh? It was also a test of your resolve. If you got this far, you
may yet get an XLX Reflector running! Now that you have a running Debian 9 server, you
can use a convenience script by Ben N5AMD to install the XLX Reflector software and
dashboard, as well as YSF Reflector and YSF2DMR.

As you wait for approvals and registrations, it is best to approach this project in phases.
This is phase 1, where you will end up with a YSF to DMR crosslink, and a separate DStar
standalone reflector.

Diagram of Phase 1
Here is a diagram of what this phase will look like.

(The example talkgroup TG 3128459 above is AD6DM’s secondary DMR ID. During the
Talkgroup Request phase, Brandmeister support suggested our group use this for testing
and for their admins to measure traffic to justify approval. DO NOT LINK TO THIS
TALKGROUP IN YOUR SERVER CONFIG. Obtain your own talkgroup number.)

Install the Multi-Reflector Server Applications
To run a multi-mode server including DStar, YSF, and YSF2DMR, run the following script
found at

https://github.com/n5amd/Multi-Reflector-Installer

git clone https://github.com/n5amd/Multi-Reflector-Installer

cd Multi-Reflector-Installer

./Multi-Reflector-Installer.sh

https://github.com/n5amd/Multi-Reflector-Installer

Follow the prompts, and enter initial setup info. It will install and fill the initial information,
but will require configuration after it’s done.

Configuring your XLX Reflector
Update your configuration in /var/www/xlxd/pgs/config.inc.php in the parts
marked in yellow:

<?php

/*

Possible values for IPModus

HideIP

ShowFullIP

ShowLast1ByteOfIP

ShowLast2ByteOfIP

ShowLast3ByteOfIP

*/

$Service = array();

$CallingHome = array();

$PageOptions = array();

$VNStat = array();

$PageOptions['ContactEmail'] = 'ad6dm@arrl.net';
// Support E-Mail address

$PageOptions['DashboardVersion'] = '2.4.0'; //
Dashboard Version

$PageOptions['PageRefreshActive'] = true; //
Activate automatic refresh

$PageOptions['PageRefreshDelay'] = '10000'; //
Page refresh time in miliseconds

$PageOptions['RepeatersPage'] = array();

$PageOptions['RepeatersPage']['LimitTo'] = 99; // Number
of Repeaters to show

$PageOptions['RepeatersPage']['IPModus'] =
'ShowLast1ByteOfIP'; // See possible options above

$PageOptions['RepeatersPage']['MasqueradeCharacter'] = '*'; //
Character used for masquerade

$PageOptions['PeerPage'] = array();

$PageOptions['PeerPage']['LimitTo'] = 99; // Number
of peers to show

$PageOptions['PeerPage']['IPModus'] =
'ShowLast1ByteOfIP'; // See possible options above

$PageOptions['PeerPage']['MasqueradeCharacter'] = '*'; //
Character used for masquerade

$PageOptions['LastHeardPage']['LimitTo'] = 39; // Number
of stations to show

$PageOptions['ModuleNames'] = array(); // Module
nomination

$PageOptions['ModuleNames']['A'] = 'Int.';

$PageOptions['ModuleNames']['B'] = 'Regional';

$PageOptions['ModuleNames']['C'] = 'National';

$PageOptions['ModuleNames']['D'] = '';

$PageOptions['MetaDescription'] = 'XLX is a D-Star
Reflector System for Ham Radio Operators.'; // Meta Tag Values,
usefull for Search Engine

$PageOptions['MetaKeywords'] = 'Ham Radio, D-Star,
XReflector, XLX, XRF, DCS, REF, '; // Meta Tag Values, usefull
forSearch Engine

$PageOptions['MetaAuthor'] = 'LX1IQ';
 // Meta Tag Values, usefull for Search

Engine

$PageOptions['MetaRevisit'] = 'After 30 Days';
 // Meta Tag Values, usefull for Search

Engine

$PageOptions['MetaRobots'] = 'index,follow';
 // Meta Tag Values, usefull for Search

Engine

$PageOptions['UserPage']['ShowFilter'] = true;
 // Show Filter on Users page

$PageOptions['Traffic']['Show'] = false;
 // Enable vnstat traffic statistics

$PageOptions['CustomTXT'] = 'JerryNet XLX
Reflector'; // custom text in your header

$Service['PIDFile'] =
'/var/log/xlxd.pid';

$Service['XMLFile'] =
'/var/log/xlxd.xml';

$CallingHome['Active'] = false;
 // xlx phone home, true or false

$CallingHome['MyDashBoardURL'] =
'https://xrf367.ad6dm.net'; // dashboard url

$CallingHome['ServerURL'] =
'http://xlxapi.rlx.lu/api.php'; // database server, do not
change !!!!

$CallingHome['PushDelay'] = 600;
 // push delay in seconds

$CallingHome['Country'] = "USA";
 // Country

$CallingHome['Comment'] = "JerryNet Reflector
on XRF367"; // Comment. Max 100 character

$CallingHome['HashFile'] =
"/tmp/callinghome.php"; // Make sure the apache user has read
and write permissions in this folder.

$CallingHome['LastCallHomefile'] =
"/tmp/lastcallhome.php"; // lastcallhome.php can remain in the
tmp folder

$CallingHome['OverrideIPAddress'] = "";
 // Insert your IP address here. Leave blank for autodetection.

No need to enter a fake address.

$CallingHome['InterlinkFile'] =
"/xlxd/xlxd.interlink"; // Path to interlink file

$VNStat['Interfaces'] = array();

$VNStat['Interfaces'][0]['Name'] = 'eth0';

$VNStat['Interfaces'][0]['Address'] = 'eth0';

$VNStat['Binary'] = '/usr/bin/vnstat';

/*

include an extra config file for people who dont like to mess with
shipped config.ing.php

this makes updating dashboard from git a little bit easier

*/

if (file_exists("../config.inc.php")) {

 include ("../config.inc.php");

}

?>

Do not turn “Active” to true until you have double-checked your desired reflector
number to avoid duplication of an existing reflector number, and ready to go live. (See
below for activation section.)

Testing Your XLX Reflector for DStar
DStar will work with your new XLX Reflector out of the box.

It will be able to service “multi-mode” DStar connections. That means, it will accept DPlus
(REF) connections, DCS connections, and DExtra (XRF) connections. However, it won’t
be found by other hams from repeaters or their hotspots because it was not officially active
or added to their hosts files yet.

However, you can test DStar on your own hotspot by “hacking” the hosts file and including
the IP address of your XLX Reflector in that file under the number you choose. It needs to
be a free XLX number, and most of them are taken already.

ssh to your hotspot as user “pi-star”:

$ sudo su -

rpi-rw

vi /root/DExtra_Hosts.txt

This will enable you to override the known entry and test your XLX reflector before it is
added to the registry.

Requesting Add to the XLX Directory (deprecated)
Update: On February 27, 2019, K6KD stopped listing XLX-based XRF reflectors, and now
lists only non-XLX “traditional” XRF reflectors for double-checking against intended XRF
number usage. See his comments here and here.

The XLX development team provides an automated way to list active/known XLX
reflectors, and this can be found on any XLX dashboard’s “Reflector List”. Check out our
reflector list: https://xrf367.ad6dm.net/index.php?show=reflectors .

Choose an unused/unlisted number when creating your own XLX reflector to avoid
duplication and confusion. There is no longer any “registration” request process for XLX.
Simply choose your XRF number, double-check that the number isn’t taken by a non-XLX
“traditional” reflector at http://xrefl.net/, and if it is free, activate your XLX reflector (set
Active config parameter mentioned above to true). It will notify the rest, and will become
part of their lists.

Of course, you can try to use a number that appears available in the XLX reflector list, but
happens to be already reserved in xrefl.net. If you do this, you will not be able to use the
XRF protocol for that particular number. You will only get to use REF and DCS protocols for
that number.

I must admit, my initial understanding of this reflector list concept was incorrect: I thought
that by being added to the xrefl directory, somehow that was referenced as the master list
by other directories and XLX sites, and I thought only after addition were you permitted to
“activate” your reflector. This is not the way it works, and you only need to reference a
dashboard reflector list of any up XLX server. You don’t do this to gain permission to
activate, but to avoid number duplications which would make your new XLX reflector
unreachable by the public.

Original (deprecated) request process was as follows.

This is a step that requires patience because it requires review and approval by the XLX
directory maintainers. Go to the “Reflector List” of any XLX site (for example
https://xrf367.ad6dm.net) and look for any unused/unlisted reflector number.
Cross-reference this number against Kings of Digital xreflector directory at
http://www.xrefl.net . If the reflector number you have in mind appears to be unused on
those two directories, you can try to apply for that reflector number.

You must go to:

http://xrefl.boards.net/thread/2/request-adding-changing-directory-xrefl

And add a reply to the end of the thread asking for your XLX reflector to be added to the
core host files, and registered as an XLX reflector. Only then after this is done by the
XReflector Directory maintainers can you activate your XLX reflector.

The request on the board goes in the format:

http://xrefl.boards.net/post/2024/thread
http://xrefl.boards.net/thread/68/changes-reflector-directory
https://xrf367.ad6dm.net/index.php?show=reflectors
http://xrefl.net/
https://xrf367.ad6dm.net/
http://www.xrefl.net/
http://xrefl.boards.net/thread/2/request-adding-changing-directory-xrefl

1) Required: the URL to a working dashboard

xrf367.ad6dm.net

2) Required: the address to be added to the host file

18.216.66.72

3) Required: the hosting or sponsoring station or organization

Hosted and sysop by AD6DM for JerryNet

4) Required: the country

USA

5) Optional: the organization website if it exists

kg6hqd.us

6) Optional: any title or other description for the reflector

JerryNet Reflector

7) Optional: the city and/or region

N/A

This process can take several days to a few weeks, depending on K6KD’s availability.

Note that: Under this scheme there are only 1000 reflector numbers available, most of
which are taken. I am not sure what the admins plan to do when all the numbers are
exhausted.

Activating your XLX Reflector
When you are ready to add your reflector to the XLX registry so that all other XLX servers
will see it and report its online status, do the following:

$CallingHome[‘Active’] = false; // xlx phone home, true or false

https://xrf367.ad6dm.net/
https://kg6hqd.us/

When this gets switched to ‘true’ your reflector will start to announce it is live and show
up on the reflector list.

**When this is flipped, a file called “callinghome.php” is created in /xlxd. Make sure
to copy this file or change its location in the config. This hash verifies the reflector is
yours. Back it up!!**

In XLX367, this configuration is buried in systemd temp subdirectories:

/tmp/systemd-private-9fda321b348a472582fdbc117dXXXXXX-apache2.service-
aWQbB1/tmp/callinghome.php

Copy that file and keep it somewhere safe! If the file disappears, and it is known to do
so in the tmp directory, your reflector will be listed as offline.

Thanks to N5AMD for this information.

Configuring the YSF Reflector
If you ran the multi-mode reflector script, you will have ysfreflector installed at system file
location:

/ysfreflector

There is really nothing major to update here, except you must specify the Name and
Description, and it must match what you will enter in the YSF Reflector registration.

Don’t worry, YSF is much faster to get going than XLX or DMR approvals.

Further configurations and customizations (including logo and define("SHOWQRZ", “on”))
can be set at:

/var/www/ysf/config/config.php

Running your YSFReflector
YSFReflector is managed by systemd, so you can use:

systemctl restart ysfreflector

All the usual commands are available:

systemctl (start | stop | status | restart) ysfreflector

https://n5amd.com/digital-radio-how-tos/create-xlx-xrf-d-star-reflector/

Registering your YSF Reflector
This process is fast. Brandmeister can take months, but YSF is quick, even minutes. By
doing this, you will be assigned a YSF number by the registry maintainers. This is a number
you can share with anyone to find your reflector.

Register your YSF Reflector at:

https://register.ysfreflector.de/register

Once this information is entered, you will receive a confirmation email with a link to
activate. Their system will automatically append the 2-character ISO country designation,
so in our case the name became “US JerryNet”. After clicking the link to activate, the YSF

https://register.ysfreflector.de/register

Reflector directory begins pinging your YSF reflector, and within half an hour or so, if it is
configured properly, your YSF Reflector should show up for anyone who updates their
Pi-Star hosts.

Pi-Star hotspots also update on a regular interval, so even if people don’t manually update
their hotspots, the settings will eventually be downloaded. Give it a day or two for most
users.

Configuring YSF2DMR for Initial YSF to DMR Use Only
Note here that while you wait for the XLX reflector to be approved and added to the
directory, you won’t be able to link the YSF reflector to your new XLX reflector. In the
meantime, you can test and operate 2-mode cross-linking with Yaesu C4FM to DMR by
pointing YSF2DMR directly to Brandmeister in your own configuration. This direct
connection is almost exactly how pi-star hotspots do YSF2DMR allowing individual Yaesu
Fusion users to be heard by DMR talkgroups.

Note also: Under this temporary setup, any unidentified YSF callsign that doesn’t have a
DMR ID shows up as a the YSF2DMR owner’s original ID (i.e. your, the admin’s, ID). And
vice versa.

/ysf2dmr/YSF2DMR.ini (before XRef Directory approval and addition)

[Info]

RXFrequency=445800000

TXFrequency=445800000

Power=1

Latitude=38.048260

Longitude=-121.351670

Height=0

Location="Cleveland, OH"

Description=Multi-Mode Repeater

URL=http://kg6hqd.us

[YSF Network]

Callsign=AD6DM

Suffix=ND

#Suffix=RPT

DstAddress=127.0.0.1

DstPort=42000

LocalAddress=127.0.0.1

LocalPort=42013

EnableWiresX=1

RemoteGateway=0

HangTime=1000

Daemon=0

[DMR Network]

Id=1107078

#XLXFile=/ysf2dmr/XLXHosts.txt

#XLXReflector=367

#XLXModule=A

StartupDstId=3128459

For TG call: StartupPC=0

StartupPC=0

Address=74.91.114.19 #IP of BM 3102
Port=62031 #Port of BM 3102

#Port=62030 #Port of your localhost

#Local=62031

Jitter=500

EnableUnlink=1

TGUnlink=4000

PCUnlink=0

Local=62032

Password=passw0rd #Password of BM 3102
#Password=PASSWORD #Default password of your local XLX server

Options=

TGListFile=/ysf2dmr/TGList-DMR.txt #Should only contain target TG

Debug=0

[DMR Id Lookup]

File=/ysf2dmr/DMRIds.dat

Time=24

[Log]

Logging levels, 0=No logging

DisplayLevel=1

FileLevel=1

FilePath=.

FileRoot=YSF2DMR

[aprs.fi]

Enable=0

AprsCallsign=AD6DM

Server=noam.aprs2.net

Server=oregon.aprs2.net

Port=14580

Password=18914

APIKey=Apikey

Refresh=240

Description=YSF2DMR

This mode will work while you are waiting for the other parts to get approved. You will
have to reconfigure this when your XLX is up and again later when Brandmeister has allowed
you to interlink your XLX reflector with one of their master servers/talkgroups. Those steps
are outlined later in this document.

Running and Restarting YSF2DMR
YSF2DMR is not very well developed as of this writing. It must be run manually, and you
can optionally create a startup script of your own, should the server unexpectedly reboot.

Run the following in gnu screen, or as a background process appending “&” (note the PID if
you run it in the background so you can kill the process later to stop ysf2dmr).

cd /ysf2dmr

./YSF2DMR YSF2DMR.ini

https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/

If this needs to be restarted, re-attach the screen, stop with CTRL-C, and run it again.

Requesting XLX Interlink with Brandmeister
(I add this step here because it takes the longest, and you might as well start the process
right away. You will use XLX interlink in Phase 3.)

Brandmeister is the main interconnected “legacy” DMR system that interlinks many DMR
Masters to allow for common talkgroups that everyone can program into their radios.
Other DMR formats include DMR+, a newer interlinking system, and XLX DMR, which
comes with the XLX multi-protocol reflector by default.

However, linking to DMR+ and XLX DMR is not as intuitive as using Brandmeister, so to
maintain compatibility it’s probably best to stick with Brandmeister as much as possible.
(For more information on using DMR+ and XLX DMR, check out this great write-up by
K6KD:
https://groups.io/g/KingsOfDigital/files/XLX%20XRF%20DMRGateway:Pi-Star%2006081
8.pdf). (Requires groups.io account and joining the Kings of Digital group.)

In order to link your XLX reflector to a BM master you must submit a “Request Bridge”
support ticket under the Brandmeister Support page.
https://support.brandmeister.network/login.jsp

It is under Brandmeister Network -> Master Servers -> Request Bridges.

https://groups.io/g/KingsOfDigital/files/XLX%20XRF%20DMRGateway:Pi-Star%20060818.pdf
https://groups.io/g/KingsOfDigital/files/XLX%20XRF%20DMRGateway:Pi-Star%20060818.pdf
https://support.brandmeister.network/login.jsp

Submit a new ticket there with all the information about your XLX Reflector, including the
need for an XLX Interlink, the BM Master (e.g. 3102) that you want to link to, the target BM
talkgroup (in our case TG 3128459), and which modules you want to link to Brandmeister.
As of this writing, this process takes a few months. :(

Phase 2: YSF to XLX DMR with DStar Transcoding (Tri-mode crosslink)
In this phase while you wait for the Brandmeister interlink request, you can still have a
3-mode crosslink between DMR, DStar, and YSF.

However, this will mean you will lose connectivity to the Brandmeister talkgroup.
Depending on your users, you can choose to stay in Phase 1 until Brandmeister gets to your
support ticket then skip to Phase 3. But if you can instruct your users on how to connect to
XLX DMR, this is a great way to get all 3 radios talking under one reflector.

http://bit.ly/how2xlx-dmr
http://bit.ly/how2xlx-dmr

Diagram of Phase 2

Configuring YSF2DMR link to Your Own XLX
To link YSF and DMR to your XLX Reflector, modify the YSF2DMR.ini as follows:

[DMR Network]

Id=YourDMRID

XLXFile=/ysf2dmr/XLXHosts.txt

XLXReflector=XXX # your reflector number

XLXModule=A # The module you want to link to

StartupDstId=4001 # 4001 corresponds to A

#StartupDstId=3128459 # this is now commented out

For TG call: StartupPC=0

StartupPC=0

Address=18.216.66.72 # update to the IP of your XLX reflector

Port=62030 # this should be default of your XLX reflector

Now you are ready to implement transcoding from DStar to your XLX DMR which will be
heard by YSF users.

AMBED Server for DStar Transcoding
The DMR and DStar aspects built into an XLX reflector coexist without interfering with each
other, and only by adding ambed software and transcoding channels can they hear each
other.

The server where ambed runs requires physical access because you need to install
AMBE3000 hardware either on USB ports or with another type of AMBE3000 board of
some sort. Therefore it is difficult to do in the cloud. Many have installed it on a Raspberry
Pi 3 in a home Internet network.

This goes against the high-availability introduction of this document, so if you can find a
way to keep the AMBED installation in a colo or in the cloud that would be ideal!
Remember: You do not want high network latency between the XLX server and the ambed
server, as this could cause transcoding to fail. It is best that they are not geographically very
distant from each other, that you have fast Internet, and do not use wifi for the ambed
server (preferring a wired connection).

Prepping and Installing AMBE3000 devices
You need at least a pair of AMBE 3000 devices, one for DStar to DMR transcoding, and one
for DMR to DStar transcoding back. The ones I used are called ThumbDV™ AMBE3000
Digital Voice Vocoder on USB, and can be found at NW Digital Radio:

http://nwdigitalradio.com/product/thumbdv/

A pair of ThumbDV’s provides these two transcoding channels, which means only one
module on your reflector (e.g. Module A, so in our case: XRF367A) should utilize the
transcoding capability. Each additional pair of AMBE3000 devices provides bidirectional
transcoding for one more module. (In theory you can use more than one module with only
one pair of ThumbDV’s, but that only invites unavailability and audio loss if your reflector
gets too many concurrent audio streams.)

http://nwdigitalradio.com/product/thumbdv/

Other AMBE devices provide more channels, such as the DV Mega AMBE3003 DV USB
Stick-- a pair of which would provide 3 transcoding channels each USB stick, and a total of 4
channels that could run concurrently. Only 1 AMBE3003 USB device would be needed to
provide 2 concurrent streams if you wanted to avoid buying a pair of USB sticks.

The XLX367 transcoding server: Raspberry 3B+ on wired network with 2 ThumbDV’s.

You need to “program” each of the ThumbDVs to have the right device name. This is a
limitation of the ambed software, so any device manufacturer name that is not “USB-3000”
will presumably cause the device to not work. (I did not test this claim.)

I copied this information out of the source document (with some minor copyedits):

http://hamradio.dip.jp/ja3gqj/ambed_server_myexp.pdf

Change ThumbDV Product Description (Deprecated as of April 2019)
Note: A few who have followed this document and created their own transcoding servers have
reported that this step is not necessary. It seems ambed can find AMBE3000 USB sticks
without any naming changes. Examples include the AMBE3003 USB from DVMega, or the
ThumbDV™ described below working fine without modified naming. Therefore this section is
deprecated and you do not need to perform these Product Description renaming steps.
Continue to Obtaining the FTDI linux drivers for your AMBE3000 devices.

http://dvmega.com/AMBE3003%20DV%20USB%20Stick.html
http://dvmega.com/AMBE3003%20DV%20USB%20Stick.html
https://github.com/LX3JL/xlxd/blob/master/ambed/readme
https://github.com/LX3JL/xlxd/blob/master/ambed/readme
http://hamradio.dip.jp/ja3gqj/ambed_server_myexp.pdf

1. Devices connected to ambed server via USB are based on USB-3000.
ThumbDV with similar functions can be substituted, but in order to substitute, it is
necessary to change "Product Description" of ThumbDV to "USB-3000" character
string.

2. In order to change "Product Description" of ThumbDV, it is necessary to install "FT
Prog" tool on Windows PC.

3. Obtaining "FT Prog" tool
Click "FT Prog" at
http://www.ftdichip.com/Support/Utilities.htm

Change the "Product Description"

1. Connect ThumbDV to USB port of Windows PC.
2. Execute the "FT Prog" tool.
3. Press the "F5" key of keyboard to read the DEVICE information.
4. Click "USB String Descriptors" in "Device Tree".
5. "Product Description" shows "ThumbDV". Change it here.
6. Overwrite "USB String Descriptors" from "ThumbDV" to "USB-3000".
7. Click the icon of the lightning mark.

http://www.ftdichip.com/Support/Utilities.htm

8. Click “Program”.

Obtain the FTDI linux drivers for your AMBE3000 devices
These steps you run on the Raspberry Pi 3 that you will be connecting your ThumbDVs to.

Drivers can be found at:

https://www.ftdichip.com/Drivers/D2XX.htm

The drivers you want are 1.4.8 ARMv7 hard-float or whatever is current for ARMv7. I read
the above document citing this specific version for Raspberry Pi 3, even though at the time
of that document’s writing, Pi 3 had an ARMv8 chip. I did not question this, and feel free to
try the v8 driver if you want, but it worked well with 1.4.8 ARMv7 hard float for the
XLX367 reflector install.

https://www.ftdichip.com/Drivers/D2XX.htm
https://www.ftdichip.com/Drivers/D2XX/Linux/libftd2xx-arm-v7-hf-1.4.8.gz

Installing ambed Software
After configuring the AMBE3000 chips, put them aside and you will now install ambed
software on the Pi.

Login to the pi and switch user to root, then perform the following:

git clone https://github.com/LX3JL/xlxd.git

Cloning into ‘xlxd’…

remote: Counting objects: 1683, done.

remote: Compressing objects: 100% (12/12), done.

remote: Total 1683 (delta 2), reused 2 (delta 0), pack-reused 1671

Receiving objects: 100% (1683/1683), 971.52 KiB | 0 bytes/s, done.

Resolving deltas: 100% (1055/1055), done.

cd xlxd

cd ambed

wget
http://www.ftdichip.com/Drivers/D2XX/Linux/libftd2xx-arm-v7-hf-1.4.8.t
gz

tar xvfz libftd2xx-arm-v7-hf-1.4.8.tgz

cd release

cd build

cp libftd2xx.* /usr/local/lib

chmod 0755 /usr/local/lib/libftd2xx.so.1.4.8

ln -sf /usr/local/lib/libftd2xx.so.1.4.8 /usr/local/lib/libftd2xx.so

cd ../../xlxd/ambed

make

g++ -c -std=c++11 -pthread cusb3003df2etinterface.cpp -o
cusb3003df2etinterface.o

g++ -c -std=c++11 -pthread cpacket.cpp -o cpacket.o

g++ -c -std=c++11 -pthread ccallsign.cpp -o ccallsign.o

g++ -c -std=c++11 -pthread cudpsocket.cpp -o cudpsocket.o

g++ -c -std=c++11 -pthread cambepacket.cpp -o cambepacket.o

g++ -c -std=c++11 -pthread cambeserver.cpp -o cambeserver.o

g++ -c -std=c++11 -pthread cstream.cpp -o cstream.o

g++ -c -std=c++11 -pthread cusb3000interface.cpp -o
cusb3000interface.o

g++ -c -std=c++11 -pthread cvocodecchannel.cpp -o cvocodecchannel.o

g++ -c -std=c++11 -pthread cusb3003hrinterface.cpp -o
cusb3003hrinterface.o

g++ -c -std=c++11 -pthread cusb3xxxinterface.cpp -o
cusb3xxxinterface.o

g++ -c -std=c++11 -pthread ctimepoint.cpp -o ctimepoint.o

g++ -c -std=c++11 -pthread cvocodecinterface.cpp -o
cvocodecinterface.o

g++ -c -std=c++11 -pthread cftdidevicedescr.cpp -o cftdidevicedescr.o

g++ -c -std=c++11 -pthread cusb3003interface.cpp -o
cusb3003interface.o

g++ -c -std=c++11 -pthread cip.cpp -o cip.o

g++ -c -std=c++11 -pthread cvocodecs.cpp -o cvocodecs.o

g++ -c -std=c++11 -pthread cvoicepacket.cpp -o cvoicepacket.o

g++ -c -std=c++11 -pthread cpacketqueue.cpp -o cpacketqueue.o

g++ -c -std=c++11 -pthread cbuffer.cpp -o cbuffer.o

g++ -c -std=c++11 -pthread ccontroller.cpp -o ccontroller.o

g++ -c -std=c++11 -pthread main.cpp -o main.o

g++ -std=c++11 -pthread cusb3003df2etinterface.o cpacket.o ccallsign.o
cudpsocket.o cambepacket.o cambeserver.o cstream.o cusb3000interface.o
cvocodecchannel.o cusb3003hrinterface.o cusb3xxxinterface.o
ctimepoint.o cvocodecinterface.o cftdidevicedescr.o
cusb3003interface.o cip.o cvocodecs.o cvoicepacket.o cpacketqueue.o
cbuffer.o ccontroller.o main.o -lftd2xx -Wl,-rpath,/usr/local/lib -o
ambed

make install

cd /ambed

chmod 777 run

Edit the run file. If AMBED is running on the same machine as xlxd, use the default
127.0.0.1.

Otherwise, set the Raspberry Pi’s IP address.

Running and restarting with the AMBE3000 devices
ambed is not a very robust piece of software. It does not run as a service, and it stays tied to
the terminal you are using. I recommend running it within gnu screen.

Running the software is as simple as doing:

cd /ambed

./run

Restarting the software is more tricky. If the ambed process exits for any reason, including
you manually stopping it, it will not be able to find the USB devices when you run it again.

You need to reboot the Pi and run it again from a new session to restart ambed.

Linking XLX to AMBED
On the XLX server, edit the /etc/init.d/xlxd file:

ARGUMENTS="XLX099 212.237.59.103 127.0.0.1"

Where “127.0.0.1” is the IP address of your AMBED server e.g. 192.168.1.10. If you’re
doing this at home, for example, on a Raspberry Pi, make sure to open up ports

https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/
https://www.gnu.org/software/screen/

10100-10199 on your home router and port forward them to the internal network IP
address of your Pi.

Now you can run the ambed software:

cd /ambed

./run

Restart xlxd on your XLX server, and see it connect to your ambed IP. You will then have
DStar to DMR transcoding!

Phase 3: Integration with Brandmeister for True 3-mode Crosslink
After Brandmeister responds to your support ticket (months after you requested it), you
can now perform the last tiny step to link a talkgroup of your choosing to your XLX
reflector.

Diagram of Phase 3

Everyone talks to everyone! Woohoo!

Setting up XLX Interlink with Brandmeister
I place this section last because this is likely the last step due to Brandmeister admins
taking so long to address submitted support tickets. You will likely wait months for any XLX
interlink request to be answered by Brandmeister server owners.

Note: For XLX367, the request took exactly 2 months to be approved by Brandmeister admins
and enabled on BM3108.

When Brandmeister has confirmed their setup is ready, you can modify your xlx
configuration to complete the interlink with Brandmeister Master.

cd /xlxd

vim xlxd.interlink

(add this line):

BM3108 3108.repeater.net A

First part (BM3108) is the name that will be displayed in the dashboard, can be anything,
but it is most helpful if descriptive. For this case is it the display name for Brandmeister
Master 3108.

Second parameter is either the IP address or FQDN of the Brandmeister Master, so here in
the example above you could put 3108.repeater.net (or alternately, 64.94.238.196).

Third parameter is the list of modules you want to link to Brandmeister. In my case I am
only use Module A for interlinking to Brandmeister. However you can put something like
ABC to link those three modules to Brandmeister. (Your initial Bridge Request ticket should
have specified the TGs you wanted those modules to link to.)

Once this is saved xlxd will load the interlink file automatically. You are LIVE!

Congratulations, you are now part of the XReflector transcoding digital ham radio network!

Project Cost
A quick summary of monetary costs relating to this project:

● AWS t2.micro instance for XLX Reflector server: ~$10/month.
● Raspberry Pi 3B+ with case: ~$40.00.
● NW Digital Radio ThumbDV USB AMBE3000 (x2): $242.56.

○ Special thanks to Don KK4QAM for donating one of the two to the JerryNet
Reflector project!

● Several days of your time configuring and testing: $priceless.
● Any radios you want to get to test the different digital voice modes: $endless.

References

An AMBED Server Experience (document)
http://hamradio.dip.jp/ja3gqj/ambed_server_myexp.pdf

Brandmeister Support
You will almost certainly need to interact with these admins if you are using BM DMR with
your XReflector.
https://support.brandmeister.network/secure/Dashboard.jspa

How to Link DMR and DStar by AF9W Bob Stephens
Informative and helpful for understanding how these dv modes work, but not quite
relevant to the above installation procedure.
http://w7hd.ddns.net/digital/DMRGateway.pdf

Procedure for Installing XLX Transcoding System by IZ7AUH
https://www.qsl.net/kb9mwr/projects/dv/multi/Procedure%20For%20Installing%20Th
e%20XLX%20Transcoding%20System.pdf

Kings of Digital Discussion Board
Kings of Digital maintains a constellation of ham radio reflectors.
https://groups.io/g/KingsOfDigital/

Multi-Reflector Installer
Gets you started in the right direction, but far from a complete install.
https://github.com/n5amd/Multi-Reflector-Installer

XLX Brandmeister config
https://wiki.brandmeister.network/index.php/XLX

XLX DMR explained
Found this funny and interesting: A lot of diagrams, but still ends in a question.
http://www.rlx.lu/forum/xlx/212-xlx270-goes-dmr-explained.html

XLX and XRF Reflectors, DMR, and DMRGateway with Pi-Star
A very good explanation of XLX, and the different kinds of DMR.
https://groups.io/g/KingsOfDigital/files/XLX%20XRF%20DMRGateway:Pi-Star%2006081
8.pdf

XLX Forum
According to many, all your questions about XLX should go here, moderator approval for
subscription, I’ve waited 2 weeks as of this writing and still not approved for viewing.
http://xlxbbs.epf.lu/

http://hamradio.dip.jp/ja3gqj/ambed_server_myexp.pdf
https://support.brandmeister.network/secure/Dashboard.jspa
http://w7hd.ddns.net/digital/DMRGateway.pdf
https://www.qsl.net/kb9mwr/projects/dv/multi/Procedure%20For%20Installing%20The%20XLX%20Transcoding%20System.pdf
https://www.qsl.net/kb9mwr/projects/dv/multi/Procedure%20For%20Installing%20The%20XLX%20Transcoding%20System.pdf
https://groups.io/g/KingsOfDigital/
https://github.com/n5amd/Multi-Reflector-Installer
https://wiki.brandmeister.network/index.php/XLX
http://www.rlx.lu/forum/xlx/212-xlx270-goes-dmr-explained.html
https://groups.io/g/KingsOfDigital/files/XLX%20XRF%20DMRGateway:Pi-Star%20060818.pdf
https://groups.io/g/KingsOfDigital/files/XLX%20XRF%20DMRGateway:Pi-Star%20060818.pdf
http://xlxbbs.epf.lu/

XLX Yahoo Group
A horrendously organized discussion board, but lots of useful tidbits of information.
https://groups.yahoo.com/neo/groups/xlxd-star

YSF2DMR sample config
After much searching, this page (in Thai) finally got me to figuring out how to get YSF2DMR
to work with direct BM linking.
http://www.dtdxa.com/index.php/2018/02/14/ysf2dmr-installation-pi-star/

YSF2DMR source code
https://github.com/juribeparada/YSF2DMR

YSF Reflector Registry
https://register.ysfreflector.de/

Dennis AD6DM

https://ad6dm.net

Twitter @AD6DM

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

If you found any of this useful, consider donating to the AD6DM Tip Jar. 73!

https://groups.yahoo.com/neo/groups/xlxd-star
http://www.dtdxa.com/index.php/2018/02/14/ysf2dmr-installation-pi-star/
https://github.com/juribeparada/YSF2DMR
https://register.ysfreflector.de/
https://ad6dm.net/
https://twitter.com/AD6DM
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=LRLJYF7AZFJJL&source=url

